Bài 1 trang 97 sgk toán 11

Giải bài bác tập trang 97, 98 bài bác 3 cung cấp số cộng Sách giáo khoa (SGK) Đại số cùng Giải tích 11. Câu 1: Trong những hàng số dưới đây, hàng số làm sao là cấp cho số cộng? Tính số hạng đầu và công không đúng của nó...

Bạn đang xem: Bài 1 trang 97 sgk toán 11


Bài 1 trang 97 sgk toán 11

Trong các dãy số tiếp sau đây, hàng số như thế nào là cung cấp số cộng? Tính số hạng đầu và công sai của nó:

a) (u_n= 5 - 2n); b) (u_n= fracn2- 1);

c) (u_n= 3^n) ; d) (u_n= frac7-3n2)


b) Với phần lớn (nin mathbb N^*), (u_n+1-u_n= fracn+12 - 1 - ( fracn2- 1) = frac12).
c) Ta có (u_n+1-u_n = 2.3^n) ko là hằng số (dựa vào (n)), vậy dãy số chưa hẳn là cấp số cùng.

Bài 2 trang 97 sgk toán thù 11

Tìm số hạng đầu và công không nên của các cấp cho số cùng sau, biết:

a) ( left{eginmatrix u_1-u_3+u_5=10\ u_1+u_6=17 endmatrix ight.),

b) ( left{eginmatrix u_7-u_3=8\ u_2.u_7=75 endmatrix ight.).

Hướng dẫn giải:

Sử dụng bí quyết (u_n= u_1+ (n – 1)d).

a) Từ hệ thức đã mang đến ta có:

( left{eginmatrix u_1-u_1-2d+u_1+4d=10\ u_1+u_1+5d =17 endmatrix ight.) hay ( left{eginmatrix u_1+2d=10\ 2u_1+5d = 17 endmatrix ight.)

.Giải hệ ta được: (u_1= 16, d = -3).

b) Từ hệ vẫn mang lại ta có:

( left{eginmatrix u_1+6d-u_1-2d =8\ (u_1+d)(u_1+6d)=75 endmatrix ight.) hay ( left{eginmatrix 2d =4\ (u_1+d)(u_1+6d)=75 endmatrix ight.)

Giải hệ ta được: (u_1= 3) với (d = 2) hoặc (u_1= -17) cùng (d = 2)

 

 

Bài 3 trang 97 sgk toán thù 11

 Trong các bài bác toán thù về cấp số cùng, ta hay chạm mặt năm đại lượng (u_1, n, d, u_n, S_n).

a) Hãy viết những hệ thức liên hệ thân các đại lượng để hoàn toàn có thể tìm được những đại lượng còn lại?

b) Lập bảng theo mẫu mã sau với điền vào địa điểm trống thích hợp:

 

*

Hướng dẫn giải:

a) Cần biết ít nhất tía trong thời hạn đại lượng (u_1, n, d, u_n, S_n) thì hoàn toàn có thể tính được nhì đại lượng còn sót lại.

b) Thực hóa học đó là năm bài bác tập nhỏ, từng bài bác ứng cùng với các dữ liệu ở một cái. Học sinch yêu cầu giải từng bài bác nhỏ rồi new điền tác dụng.

b1) Biết (u_1= -2, u_n= 55, n = 20). Tìm (d, S_n)

Áp dụng cách làm (d = u_n - u_1 over n - 1,S_n = (u_1 + u_n).n over 2)

Đáp số: (d = 3, S_20= 530).

Xem thêm: Chi Nhánh, Phòng Giao Dịch Ngân Hàng Vietcombank Chi Nhánh Đà Nẵng Tháng 4/2021

b2) Biết (d = -4, n = 15), (S_n= 120). Tìm (u_1,u_n)

Áp dụng cách làm (u_n= u_1+ (n - 1)d) với (S_n = (u_1 + u_n).n over 2)

ta có: 

(left{ matrix u_1 - u_15 = 56 hfill cr u_1 + u_15 = 16 hfill cr ight.)

Giải hệ trên, ta được (u_1= 36, u_15= - 20).

b3) Áp dụng công thức (u_n= u_1+ (n - 1)d), trường đoản cú đây ta tìm được (n); tiếp theo sau vận dụng công thức (S_n = (u_1 + u_n).n over 2). Đáp số: (n = 28), (S_n= 140).

b4) Áp dụng công thức (S_n = (u_1 + u_n).n over 2), từ bỏ đây tìm kiếm được (u_1), tiếp theo sau vận dụng phương pháp (u_n= u_1+ (n - 1)d) để tìm kiếm (d). Đáp số: (u_1= -5, d= 2).

b5) Áp dụng bí quyết (S_n = left< 2u_1 + (n - 1)d ight>.n over 2), từ phía trên kiếm được (n), tiếp sau áp dụng công thức (u_n= u_1+ (n - 1)d). Đáp số: (n = 10, u_n= -43).

 


Bài 4 trang 98 sgk tân oán 11

 Mặt sàn tầng một của một ngôi nhà cao hơn khía cạnh sân (0,5 m). Cầu thang đi trường đoản cú tầng một lên tầng (2) gồm (21) bậc, từng bậc cao (18 cm).

a) Hãy viết phương pháp nhằm tra cứu độ cao của một bậc tuỳ ý đối với mặt Sảnh.

b) Tính độ dài của sàn tầng hai so với khía cạnh sân.

Hướng dẫn giải:

a) điện thoại tư vấn độ cao của bậc trang bị (n) so với phương diện Sảnh là (h_n)

Ta có: ( h_n= 0,5 + n.0,18(m)).

b) Chiều cao phương diện sàn tầng hai đối với mặt sân là

(h_21= 0,5 + 21.0,18 = 4,28 (m)).

 

Bài 5 trang 98 sgk tân oán 11

Từ (0) giờ cho (12) giờ trưa, đồng hồ đeo tay đánh từng nào tiếng, trường hợp nó chỉ đánh chuông báo giờ với số tiếng chuông ngay số giờ

Hướng dẫn giải:

Đồng hồ nước đặt số tiếng chuông là: (S = 1 + 2 + 3 +....+ 12). Đây là tổng của (12) số hạng của cung cấp số cùng gồm (u_1= 1, u_12= 12). Do kia vận dụng bí quyết tính tổng,